
Operated for the U.S. Department of Energy by

Sandia Corporation
P.O. Box 5800
Albuquerque, New Mexico 87185-1189

date: September 24, 2014

from: Daniel Dolan

subject: The ThermalDiffusion class

The ThermalDiffusion class was created to simulate one-dimensional thermal diffusion across
one or more material layers. Each layer is assumed to have constant conductivity K and diffusivity
κ. Interface conductance between layers may be specified. Internal heating as a function of position
and time is also supported. The ThermalDiffusion class is included in the SMASH package [1] as
part of the PDE (Partial Differential Equation) subpackage.

Figure 1 illustrates how the ThermalDiffusion class represents a multi-layer diffusion problem.
This particular problem has three layers, each represented by six nodes: layer 1 is nodes 1–6,
layer 2 is nodes 7–12, and layer 3 is nodes 13–18. The nodes are uniformly spaced within each
layer, but constant spacing between layers is not required. Contact between layers is represented
by overlapping nodes: nodes 6–7 and nodes 12–13 are located at the same position but may have
different temperature values.

Diffusion between nodes is simulated using the numerical method of lines (MOL). [2, 3] This
approach represents the diffusion equation as a set of coupled, ordinary differential equations. At
each time step, the time derivative of temperature T at interior position xm is represented as:

dT (xm, t))

dt
≈ κm

∆2
m

[
T (xm+1, t)− 2T (xm, t) + T (xm−1, t)

]
+ F (xm, t) (1)

where F is the local heating function (scaled by density and specific heat to have units of [tem-
perature]/[time]). Time derivatives are calculated at all interior nodes to advance the calculation
from the initial state to a specified stopping time. Boundary nodes are managed separately with
non-symmetric derivatives that maintain the fourth-order accuracy of Equation 1.

• Exterior boundaries (m = 1 and m = M) are treated as perfectly insulating.

∂T

∂x
= 0 (2)

• Internal boundaries (material A on the left, material B on the right) are governed by two
conditions.

KA
∂TA
∂x

= KB
∂TB
∂x

(3)

TB = TA +
KA

G

∂TA
∂x

(4)

layer 1

layer 2

layer 3
internal!

boundaries

1 6

7

12

13 18

Figure 1: Conceptual setup of a three-layer diffusion problem

Exceptional Service in the National Interest

SAND2014-18790R



Daniel Dolan September 24, 2014

For ideal coupling, conductance approaches infinity and TA = TB , but real interfaces have
finite conductance due to incomplete contact or interface mismatch. Incomplete surface contact
effects depend significantly on the applied mechanical stress; [4, 5] characteristic values of G
range from 103–105 W/m2·K. Interface mismatch (also known as boundary conductance [6])
depends on the similarity of thermal carriers (electrons or phones) but typically allows much
higher conductance (107–109 W/m2·K at room temperature).

This article describes applications of the ThermalDiffusion class. First, the process of cre-
ating, configuring, and using a ThermalDiffusion object is described. Next, a series of example
calculations are presented. In several cases, simulations are compared to analytical solutions from
Reference 7.

Creating and using ThermalDiffusion objects

ThermalDiffusion objects are created by calling the class with a single input to define number
of material layers.

>> object=ThermalDiffusion(2); % two-layer simulation

There is no limit to the number of layers in a simulation, but this number cannot be changed after
an object is created. The number of layers L automatically defines the number of internal interface
(L− 1), and these are used to define internal storage arrays for layer/interface parameters.

Several object properties are used to define the simulation.

Nodes specifies the number of nodes used in each layer. The default value is 100 nodes per layer.
This property can be overridden, but each layer must have at least 5 nodes.

Thickness∗ specifies the physical thickness of each layer.

InitialTemperature∗ specifies the initial temperature of each layer. Numerical values assign a
uniform temperature to each layer. A function handle can also be used to calculate T0(x) at
the beginning of the simulation.

Conductivity∗ specifies the thermal conductivity (K) of each layer.

Diffusivity∗ specifies the thermal diffusivity (κ) of each layer.

InterfaceConductance specifies the thermal conductance (G) of each interface (default is infinity).

InternalHeating specifies a function handle that evaluates the scaled heating function F (x, t). If
no function handle is provided, the simulation assumes F (x, t) = 0.

Output Display (’verbose’) or suppress (’silent’) solver output report (default is ’silent’).

Properties marked with an asterisk have no default value and must be specified before a simulation
can be performed. Layer/interface properties can be specified individually or set to a common value.

>> object.Nodes=[100 200]; % assign 100 nodes to layer 1, 200 nodes to layer 2

>> object.Nodes=[100]; % assign 100 nodes to every layer

Individual specifications must be consistent with the layers/interfaces in the simulations: a three-
layer simulation can accept three Nodes, Thickness, Conductivity, or Diffusivity values and two
InterfaceConductance values. The ThermalDiffusion class does not use any particular system of
units for the diffusion calculations—users must maintain dimensional consistency!

Additional properties are provided for controlling the ode15s solver used by the simulation.

RelTol Relative error tolerance for the simulation (default is 10−4).

- 2 -



Daniel Dolan September 24, 2014

AbsTol Absolute error tolerance for the simulation (default is 10−4).

InitialStep Initial time step for the simulation (default is [], causing the solver to determine initial
time step).

MaxStep Maximum time step for the simulation (default is [], causing the solver to increase time
step as much as possible while maintaining tolerance requirements).

These properties should typically be left at their default values, but changes can be made as needed
(as demonstrated in example E).

Once all required properties have been specified, the diffusion problem is initiated with the
simulate method.

>> result=simulate(object,tmax);

Simulations begin at t = 0 and continue until the specified maximum time is reached. Results are
stored as a mesh1 object, which provides methods for displaying information at fixed time (snapshots)
or fixed node value (histories).

>> snapshot(result,tplot); % plot snapshots at specified times

>> [x,T]=snapshot(result,tplot); % extract snapshot data

>> history(result,nodes); % plot histories at specified nodes

>> [t,T]=history(result,nodes); % extract history data

Both the mesh1 and ThermalDiffusion class are part of the PDE subpackage. To learn more about
either, access the online documentation by typing “doc SMASH.PDE”.

Example A: perfect coupling between two solids

Diffusion between two layers (each with uniform initial temperature) is a convenient test problem
for the ThermalDiffusion class. In these problems, temperature can be expressed in a dimensionless
form using the minimum and maximum initial temperatures.

vk =
Tk − Tmin
Tmax − Tmin

k = 1..2 (5)

The initial conditions can be now be specified as 0 (cold layer) and 1 (hot layer).
Consider a hot layer of tin (K = 63 W/m·K, κ = 4×10−5 m2/s) in perfect contact (G =∞) with

a cold layer of lithium fluoride (K = 10 W/m·K, κ = 2 × 10−6 m2/s). For all two-layer examples
described here, the hot layer is located to the left of the cold layer. Figure 2 shows a diffusion
simulation when both layers are 50 µm thick, each represented with 500 nodes. Such thickness allow
the simulation to mimic the interface between two semi-infinite materials, a problem which has an
analytic solution.

The interface temperature (x = 50 µm) in this problem determined by the effusivity ratio.

vinterface =
η2

η1 + η2
(6)

Effusivity (η ≡
√
kρcp) quantifies a material’s ability to exchange energy though thermal contact;

the “1” subscript refers to the cold material and the “2” subscript refers to the hot material. The
effusivities for tin and lithium fluoride are 9.9× 103 J/m2·K·s1/2 and 7.1× 103 J/m2·K·s1/2, respec-
tively. Despite these awkward dimensions, it is the effusivity ratio that really matters, and in this
case the normalized interface temperature is 0.581. The simulation produces a similar result, though
a few nanoseconds are required before the value stabilizes to this value. Smaller time steps and finer
meshes seem to help, but several iterations are always needed to transition the problem from the
infinite temperature gradient at t = 0 to the value specified by Equation 6.

- 3 -



Daniel Dolan September 24, 2014

40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

Position (µm)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

 

 

1 ns

10 ns

100 ns

1000 ns

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

Time (ns)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

45 46 47 48 49 50 51 52 53 54 55
0

0.2

0.4

0.6

0.8

1

Position (µm)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

 

 

1 ns

100 ns

Figure 2: Simulation of hot tin in perfect contact with cold lithium fluoride. (top left) Temperature
snapshots near the material interface. (top right) Temperature history on the tin side of the interface;
the lithium fluoride side of this interface is identical to the tin side after a few nanoseconds. (bottom)
Simulation snapshots are shown as open circles, analytic solutions as black lines.

- 4 -



Daniel Dolan September 24, 2014

49 49.2 49.4 49.6 49.8 50 50.2 50.4 50.6 50.8 51

0

0.2

0.4

0.6

0.8

1

Position (µm)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

49 49.2 49.4 49.6 49.8 50 50.2 50.4 50.6 50.8 51

0

0.2

0.4

0.6

0.8

1

Position (µm)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

Figure 3: Interface details for the tin/lithium fluoride simulations (t = 1 ns). (top) Interface snapshot
for a coarse mesh, two-layer simulation. (bottom) Refined simulation using fine meshing near the
interface.

Example B: simulation refinements

Although the simulation describe in example A mimics the analytic solution, close inspection
of the boundary region (Figure 3) reveals problems. Changing the tolerance time step options
improves agreement with the analytic solution, but increasing the number of nodes is the most
effective approach. Precisely how this is done greatly affects the time required for the simulation.

One way to increase node density is to use more nodes per layer. In example A, each layer was
assigned 500 nodes, and this can easily be changed.

>> object.Nodes=5000; % use 5000 nodes per layer

The 500 node/layer simulation requires a few seconds, but it turns out that using 5000 nodes/layer
takes substantially more time. The verbose output mode:

>> object.OutputMode=’verbose’;

allows users to quantify the amount of time and effort being used in each simulation. Experimenting
with the number of nodes N (leaving all other settings fixed) reveals that the simulation time scales
with N3. As such, a simulation using 5000 nodes per layer takes 1000 times longer than a simulation
with 500 nodes per layer!

- 5 -



Daniel Dolan September 24, 2014

The scaling of computation time with the number of nodes can be understood from the stability
criteria. [2].

κ∆t

(∆x)
2 ≤

1

2
(7)

For uniform spacing over N nodes, the number of time steps that must be taken to complete the
simulation scales with N2. The number of calculations per step scales with N , so the total number
of calculations is proportional to N3 (consistent with empirical tests). Not only does uniformly
increasing the node density become computationally slow, the effort is wasted wherever temperature
varies gradually.

Strategic node placement is a far more effective strategy than uniformly increasing node density.
For the two-layer example described in the previous section, sharp thermal gradients are confined to
central interface. Rather than using two layers with a large number of nodes (> 1000), the problem
can be recast as four layers: two composed of tin and two composed of lithium fluoride. The lower
plot of Figure 3 was obtained by dividing the original 50 µm layers into an exterior 48 µm layer
and an interior 2 µm layer; 100 nodes were assigned to each layer. The revised calculation slightly
slower than the original simulation, but the results match the analytic result far more accurately.

Example C: imperfect coupling between two solids

Continuing with the four-layer approach described in example B, suppose that the interface
between tin and lithium fluoride has finite conductance.1 Figure 4 shows calculated snapshots and
histories for G = 108 W/m2·K. This value is characteristic of an insulator-metal interface at room
temperature; extremely mismatched materials have surface conductances of 107 W/m2·K.

Finite conductance causes a temperature discontinuity whenever heat is passing through an
interface. This is particularly evident for snapshots prior to 100 ns, but the effect persists for a very
long time. Even at t = 1000 ns, there is 2% temperature difference across the interface.

Example D: coupling between a solid and liquid

Consider the thermal transport between a hot metal (such as gold) and a cold liquid (such as
water). This situation is extreme in several ways. Gold has a much larger conductivity (300 W/m·K)
and diffusivity (104 m2/s) than liquid water (0.6 W/m·K and 10−7 m2/s, respectively). Furthermore,
the conductance between these extremely different materials is of order 107 W/m2·K, inhibiting
thermal transfer at the interface.

Figure 5 shows a diffusion simulations for gold and water using the four-layer approach described
in previous examples. The results illustrate important aspects of a highly mismatched diffusion
problem.

• The temperature gradient is very low in the metal layer and very high in the liquid layer,
consistent with Equation 3.

• Finite interface conductance permits temperature discontinuity, allowing the metal side of the
interface to remain very near the initial bulk temperature (v = 1 in this case).

• The liquid side of the interface moves toward the temperature of the metal side, but full
equilibration takes a very long time.

This and the previous example indicate that interface temperature is not a single, constant quantity
as posited by Equation 6, at least not for some time. Interface temperature is controlled by multiple

1This simulation has three interfaces, but the first and third interfaces are artifacts of layering
(coarse/fine/fine/coarse mesh) used to improve accuracy near the true material interface. The appropriate con-
ductance setting is [inf G inf].

- 6 -



Daniel Dolan September 24, 2014

40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

Position (µm)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

 

 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time (ns)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

49 49.2 49.4 49.6 49.8 50 50.2 50.4 50.6 50.8 51
0

0.2

0.4

0.6

0.8

1

Position (µm)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

 

 

1 ns

10 ns

100 ns

1000 ns

1 ns

100 ns

Figure 4: Simulation of a material interface (tin and lithium fluoride) with finite conductance. (top
left) Temperature snapshots near the material interface. (top right) Temperature histories on the tin
(blue) and lithium fluoride (green) side of the interface. (bottom) Simulation snapshots are shown
as open circles, analytic solutions as black lines.

- 7 -



Daniel Dolan September 24, 2014

40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

Position (µm)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

 

 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time (ns)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

49 49.2 49.4 49.6 49.8 50 50.2 50.4 50.6 50.8 51
0

0.2

0.4

0.6

0.8

1

Position (µm)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

 

 

1 ns

10 ns

100 ns

1000 ns

1 ns

100 ns

Figure 5: Simulation of metal-liquid (gold-water) interface with finite conductance. (top left) Tem-
perature snapshots near the material interface. (top right) Temperature histories on the tin (blue)
and lithium fluoride (green) side of the interface. (bottom) Simulation snapshots are shown as open
circles, analytic solutions as black lines.

- 8 -



Daniel Dolan September 24, 2014

4 6 8 10 12 14
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Position (µm)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re

 

 

1 ns

10 ns

20 ns

30 ns

50 ns

100 ns

200 ns

300 ns

400 ns

500 ns

Figure 6: Temperature snapshots for lithium fluoride with an non-uniform initial temperature dis-
tribution (4–5 µm) and a transient heat sink (10 µm).

parameters, not effusivity ratio alone. Numerical simulations require five parameters (two conduc-
tivities, two diffusivities, and one conductance); the analytic solution (at the interface) reduces these
five quantities to two distinct parameters.

Example E: internal heating

As a final example, consider a single layer of lithium fluoride that begins with a non-uniform
temperature distribution and has a transient, localized heat sink.

T0(x) =

{
1 4 µm < x < 5 µm
0 otherwise

(8)

F (x, t) = Ae−(x−x0)
2/2σ2

xe−(t−t0)2/2σ2
t (9)

For this example, let A = −10 K/ns, x0 = 10 µm, σx = 0.1 µm, t0 = 20 ns, and σt = 2 ns.
Figure 6 shows temperature snapshots from a simulation of 20 µm of lithium fluoride using

500 nodes. The initial temperature distribution and heating functions are defined as subfunctions:

function T=initial(x)

T=zeros(size(x));

- 9 -



Daniel Dolan September 24, 2014

index=(x>4e-6) & (x<5e-6);

T(index)=1;

end

function F=sink(x,t)

A=-1/(1e-9); % K/s

x0=mean(x); % m

sigmax=0.1e-6; % m

t0=20e-9; % s

sigmat=2e-9; % s

F=A*exp(-(x-x0).^2/(2*sigmax^2))*exp(-(t-t0)^2/(2*sigmat^2));

end

and passed to the simulation using function handles.

>> object.InitialTemperature=@initial;

>> object.InternalHeating=@sink;

An additional customization is needed to prevent the simulation from skipping over the transient
heat sink.

>> object.MaxStep=0.1e-9; % 0.1 ns maximum time steps

All other aspects of the calculation—parameter definition, simulation launch, and visualization—are
similar to the multi-layer examples described above.

References

[1] D.H. Dolan and T. Ao. The Sandia Matlab AnalysiS Hierarchy (SMASH) package. Technical
Report (in preparation), Sandia National Laboratories, (2014).

[2] W.E. Schiesser. The Numerical Method of Lines. Academic Press, San Diego, (1991).

[3] W.E. Schiesser and G.W. Griffiths. A compendium of partial differential equation models: method
of lines analysis with MATLAB. Cambridge University Press, (2009).

[4] R.B. Jacobs and C. Starr. Thermal conductance of metallic contacts. Review of Scientific
Instruments 10, 140 (1939).

[5] H. Yüncü. Thermal contact conductance of nominally flat surfaces. Heat and Mass Transfer 43,
1 (2006).

[6] P.E. Hopkins. Thermal transport across solid interfaces with nanoscale imperfections: effects
of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN
Mechanical Engineering 2013, 682586 (2013).

[7] H.S. Carslaw and J.C. Jaeger. Conduction of heat in solids. Oxford University Press, Oxford,
2nd edition, (1959).

Sandia National Laboratories is a multi-program laboratory managed and operated

by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corpora-

tion, for the U.S. Department of Energys National Nuclear Security Administration

under contract DE-AC04-94AL85000.

- 10 -


